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ABSTRACT

Principal component analysis (PCA) is a widely used multivariate data analysis
technique for variable reduction and analysis of variable relationships, among other
purposes. In this current study set in New England, PCA is used together with
local indicators of spatial autocorrelation (LISAs) to examine regional patterns of
spatial dependence between population density and synthetic variables (i.e. principal
components) derived from mobility-related socio-economic variables. A secondary
analysis using geographically weighted principal component analysis (GWPCA)
is used to identify which of the original contributing variables are most important
for different locations within the region. Using a local bivariate indicator of spatial
autocorrelation, overall results show that most resulting principal components are
positively spatially correlated with population density, although this correlation is
not a direct point-to-point one and instead relates the principal component to the
spatial lag of density for a given location. These findings are relevant for understanding
the relationship between agglomeration (as represented by density) and the triad
of mobility, accessibility, and connectivity. The results of this study could aid and
inform future research and efforts at modeling travel behavior.

Keywords: Mobility, Population Density, Principal Component Analysis, Geographically
Weighted Principal Component Analysis, Bivariate Local Moran'’s I, New England,
NCHS 2013 County Typology

Introduction

Regional travel-to-work patterns are shaped through the conceptual triad of accessibility,
mobility, and connectivity, which is anchored by agglomeration. Agglomeration, which can be
represented by population density, is understood here to include the geographic concentration
of people, jobs, infrastructure, shopping, institutions, and recreation that form urbanized areas.
Given the many factors encompassed by agglomeration, the positive correlation between density
on the one hand and accessibility and connectivity on the other hand comes as no surprise.
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The relationship between agglomeration and mobility is somewhat more difficult to articulate
as some mobility measures are evidence for previous travel such as vehicles miles traveled
(VMT) or indications of potential travel, such as the numerous socio-economic variables

used in transportation analyses. Additionally, the number and diversity of socio-economic
variables complicate efforts to understand the relationship between these variables and density
(agglomeration). As these socio-economic variables shape mobility, they thus also affect, and
can be affected by, accessibility and connectivity. Furthermore, socio-economic variables

have both attribute values (quantitative or qualitative) and spatial properties (georeferenced
locations). Within multivariate data analysis, a standard method of variable reduction in the
face of many potentially interrelated variables is principal component analysis (PCA). Synthetic
variables (known as principal components) are created out of the original group of variables and
have the important property of explaining high levels of variance within the original data set
(while using fewer variables) and being mutually orthogonal and unrelated. Traditional PCA is
non-spatial but can be used in tandem with measures of global and local spatial autocorrelation
to understand their patterns of geographic distribution (see Anselin 2020a). Geographically
weighted principal component analysis (GWPCA), a relatively new method, combines analysis
of both attribute and spatial heterogeneity (as opposed to autocorrelation), thus highlighting
the variability of attributes across space. This study uses a combination of traditional PCA

and indicators of spatial (auto-) correlation as well as GWPCA in an exploratory analysis of
mobility-related socio-economic variables and their relationship to population density in New
England.

New England offers a unique case study for several reasons: Firstly, the region is well-
defined and largely self-contained, bordered by New York state and Canada while consisting
of the six states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and
Vermont. Secondly, New England states have almost no unincorporated land, which enables
the straightforward designation of contiguity regimes between (town) boundaries, a key part
of spatial analysis. Thirdly, New England offers an almost textbook example of a coastal dense
pattern of urban development contrasting with the low-density hinterland, which obviously
lends itself to a density-based analysis. In fact, this contrast may be the most prominent feature
of the population distribution in New England (see Figure 1). The density gradient runs
diagonally from just north of Boston down to the Connecticut-New York State line, with the
ten largest regional urban populations all located to the south of the gradient. Nevertheless,
there are isolated population centers in northern New England, notably the Burlington, VT
area (home to the three largest Vermont towns) and the scattered patterns found in Maine.
Settlement and mobility patterns are also related to topography: New England is characterized
by mountains, hills, rivers, and extensive coastline and not only is the population concentrated
in comparatively flat, low-lying areas (e.g. coastal plain, Connecticut River valley, Champlain
Valley in Vermont), but travel between locations, especially more remote ones, are impeded by
difficult terrain even though modern paved roads are found everywhere in the region.

This study is concerned with understanding spatial and attribute patterns of mobility-
related socio-economic variables and their relationship to density within New England but
must employ a means to reduce the number of variables and simplify the analysis. The principal
components derived from these variables can be used in a spatial analysis that more efficiently
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gets at the relationship between the original socio-economic factors — now combined in

the form of synthetic variables and essentially representing multifaceted socio-economic
profiles — and density. Thus, the concrete research question for this study is: Are the principal
components derived from the original socio-economic data (positively) spatially dependent with
population density? And if so, where? In other words, do spatial patterns of density impact the
spatial patterns of these socio-economic variables? It would be expected with accessibility and
connectivity, but it is less clear with socio-economic variables and rakes on significance if these
synthetic variables were to be used in comparative and/or predictive analyses involving measures
of accessibility and connectivity. The primary analysis described above has the limitation thar it
is still global in narure, meaning in this case that the relationship berween contributing socio-
economic variables within a PCA is determined for the entire study area and is not sensitive to
local variations. As a complement to the primary analysis, a secondary analysis consisting of a
GWPCA provides a needed local view within this study since there is every reason to believe
that these relationships are not static over space.
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Figure 1: Population Densiry and Its Spatial Lag in New England.
(Source: Author using 'tmap' package in R).
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Results from the traditional PCA, used together with univariate and bivariate local
indicators of spatial autocorrelation (LISAs), show that there is positive spatial correlation
between the synthetic variables and population density in all cases but one. The intensity
of the spatial correlation is low but is nevertheless statistically significant. The subsequent
GWPCA demonstrates that the importance of original contributing variables within
individual principal components was not spatially constant, with different variables being
the most important contributors in different locations, something that is unknowable from
traditional “global” PCA methods. The practical significance of these findings are as follows:
1) it strongly suggests the role of agglomerartion in shaping mobility via the spatial dependence
between density and mobility-related socio-economic characteristics, 2) the derived synthetic
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variables (principal components) can be used in subsequent analyses involving variables that
may be highly correlated with density without the risk of major complications stemming from
multicollinearity, 3) there is clear variation between low density (rural) locations and higher
density (urban) locations with respect to these synthetic variables, and 4) results of GWPCA
offer clues as to which contributing variables are the most important in shaping their principal
components in given locations. There are several caveats to this study. Firstly, no list of socio-
economic variables is complete, and variable reductions comes at the price of potentially
omitting relevant variables. PCA results can vary significantly depending on which variables
are included, although some relatively stable patterns emerge. Secondly, these results from

an aggregate level analysis are not directly transferable to individual-level analyses. Thirdly,
any formal articulation of relationships between these principal components and measures of
accessibility and connectivity will have to wait for more rigorous future modeling analyses.
Thus, the socio-economic profiles created by each principal component and their relationship
to transportation patterns are a potential future avenue of research. This research is of potential
interest to transportation geographers, planners, spatial scientists, and those with a regional
interest in New England.

Literature Review

For the last thirty years, Paul Krugman’s (1991) new economic geography has had
considerable influence over debates surrounding the unequal allocation of industry, populations,
and attendant phenomena such as infrastructure within and between regions. This massing
of interrelated things rooted in a spatial concentration of industry and population can be
termed agglomeration. New economic geography holds that regions can develop into core and
peripheries as a result of agglomeration creating beneficial economies of scale, transport costs
being reduced, and a certain distribution of manufacturing. Krugman (1991) noted that there
was general agreement that economic production concentrates or localizes’ in part because of
access to common labor pool and information spillovers, which were first discussed as causes
by the English economist Alfred Marshall in the late 1800s. These benefits of agglomeration,
generally held to be positive, combined with economies of scale are captured in the term
economies of agglomeration (or agglomeration economies). From a transportation perspective,
one very important observation put forth by Krugman (1991) was that decreasing transport
costs can in fact reinforce the consolidation of core and peripheral areas. Lafourcade and Thisse
(2011) echoed this point. Agglomeration manifests itself as urban form and one of the most
basic and indeed common means of measuring this is population density (Clifton, Ewing,
Knaap, and Song 2008). Density is usually positively correlated with jobs, infrastructure, trip
generation, and higher levels of various socio-economic indicators. Thus, density can justifiably
be treated as a stand-in for agglomeration.

Density strongly impacts the relative accessibility of a location, as can be seen in the fact
that accessibility tends to reflect the spatial distribution of population density (Sohn 2005).
This is illustrative of place-based accessibility, which as a concept can be defined as “the ease
of reaching desired locations” (Clifton ct al. 2008, 28). Both clements of mass (a desired
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location, usually made attractive by its size) and frictions (in the form of transportation

costs and their inversely proportional relationship) are present in this definition. This sort of
conception of accessibility is derived from the gravity model, which arose as an analogy to Isaac
Newton’s mathematical description of gravity. Alan G. Wilson (1967, 2001) reformulated

the classic gravity model into a spatial interaction model (SIM) which is a far more flexible
implementation of the gravity concept. The SIM has three potential forms, production-
constrained, destination constrained, and doubly (production and destination) constrained.
Alternatively, another place-focused conception of accessibility is given by Bruinsma and
Rietveld (1996), where it represents “the potential opportunities for interaction” for regional
economic purposes. This definition is attractive as it broadens the ways in which place-based
accessibility can be defined. In contrast to both place-focused definitions discussed above, there
is also people-based accessibility, which refers to “how easily a person...can reach activity sites”
(Hanson 2004, 5). People-based accessibility is fundamentally shaped by factors of location and
socio-economic attributes, which are in the first instance measures of mobility. Thus, socio-
economic attributes, more properly categorized as measures of mobility, can influence people-
based accessibility. They could also influence place-based accessibility when included in a spatial
interaction model as additional variables.

Mobility can be thought of as the ability of people to physically move around in space. In
the context of commuting, mobility attributes represent the cither the aggregate or individual
capacity to travel to their place of work. Socio-economic attributes tend to be best thought of
as factors that affect mobility as opposed to observed (or sometimes estimated) measures of
mobility, such as vehicle miles traveled (VMT). A number of factors influence trip production
among individuals, including income, vehicles owned, houschold characteristics, family
size, land value, residential density, and accessibility (Ortuzar and Willumsen 2011, 126),
although more could certainly be added. These factors can be stratified into groups such as
income brackets in order to further differentiate the population. Scholarly research has as well
identified other important factors such as gender, race/ ethnicity, level of education, and transit
availability. Susan Hanson, for example, has published extensively on the role of gender in
mobility (Hanson 2010). Race and ethnicity as factors are also causes of differentiated mobility,
including when they are compounded by gender differences (Hu 2020). For example, ethnic
and racial minority groups often face long (duration) and complex commutes involving multiple
transit connections owing to spatial mismatch, i.c. the residence of these groups far away from
their places of work. Thus, they face serious challenges not only related to mobility, but also to
accessing the benefits from connectivity and accessibility that would be available were it not
for a lack of mobility. The intersection of transit-usage and low-income status takes on special
significance where the absence of a public transportation option decisively curtails the person
mobility of low-income persons (see Giuliano 2005). The type of employment and level of
education can also significantly influence mobility patterns, with high-income, highly educated
individuals often commuting much longer distances to work, or alternatively, being in the
economic position to afford expensive urban housing closer to their work. The connectivity (or
lack thereof) of transportation infrastructure can severely impede personal mobility, even where
socio-economic factors are otherwise favorable (Bjarnason 2014). Mobile phone data has been
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increasingly used in the last decade to produce detailed observational data of personal mobility.
Some research has managed to couple this observational data together with socio-economic data
to create especially solid analyses of travel behavior (Xu et al. 2017). What is exceedingly clear

is that there are a very large number of potential socio-economic variables to choose from when
performing an analysis. However, it can be unclear as to which ones are the most important for
various analyses.

The concept of connectivity is the last part of the triad whose first two elements are
accessibility and mobility. Connectivity is the measure of ‘linkages’ between origins and
destinations and is best understood in terms of networks, which fundamentally consist of
nodes and links, each with their own attributes. Network connectivity is generally described
by measures such as degree of node, centrality index, etc... Transportation infrastructure is a
particular type of physical network where both nodes (i.e. intersections, interchanges, major
transshipment points) and links (i.e. roadways, railways) are tangible and exist to facilitate
movement people and goods. Transportation infrastructure contrasts with commuter flow
networks where nodes and links are not both tangible' . Transportation networks arise and
densify in the presence of agglomeration. The densification of the network leads to greater
accessibility as the transportation costs are lowered by better infrastructure. However, although
accessibility and infrastructure are generally correlated positively, Marciniczak and Bartosiewicz
noted that at some point, increasing the density of the built environment actually decreases
accessibility as it forms an impedance (2018). Greater transportation network connectivity
does not stymie the benefits of personal mobility as would be the case in conditions of low
connectivity, which limit options of people desiring to travel even if they are otherwise able
(Vickerman 1996). Strategically chosen new transportation infrastructure can even improve
mobility of the population (see Bjarnason 2014). Thus, transportation network connectivity,
place-based accessibility, and personal mobility enter a self-reinforcing cycle. Despite the
seemingly positive returns of increasing connectivity, regional inequalities resulting from
agglomeration can be exacerbated by new and better infrastructure, as workers will move out
of the hinterlands to towards urbanized areas but retain easy access to family and friends back
home facilitated by said infrastructure. Transportation infrastructure networks can be measured
in a number of ways including: total length of facilities in a given area, density of facilities,
total length of facility types (i.e. Interstates), interchanges, intersections, among others. Black
(2003) details many applicable measures from graph theory, while Labi et al (2019) go further
and include additional measures that combine characteristics of network connectivity with
accessibility and mobility measures.

Tools are needed that lend greater structure and clarity to the analysis of multiple variables
that characterize accessibility, mobility, and connectivity. Principal component analysis
(PCA) is a standard method of multivariate data analysis wherein variable reduction creates
uncorrelated (orthogonal) synthetic variables from linear combinations of potentially related
real variables. These synthetic variables are called principal components (PCs) and are equal to
the number of original real variables. PCs are in fact eigenvectors given in reverse rank order
of most variance explained to least (signified by cigenvalues), with the first few PCs usually
explaining the vast majority of variance within the dataset. The steps and their corresponding
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mathematical notations are lengthy and are only briefly summarized in Appendix A. However,
more complete explanations can be found in Joliffe (2002) or Abdi and Williams (2010).
Demiar et al. (2013) offer a thorough review of the use of PCA within geography over the last
century. The unique qualities of spatial data were discussed as well. Although there have been
notable periods of interest in PCA as an analytical tool in its own right, such as during the
‘quantitative revolution’ of the 1960s, substantial scholarly interest in PCA among geographers
has never remained consistent. This is regrettable given the specific analyses which can be
performed with PCA as described by Jeffers (1967), cited in Harris et al. (2011, 1717):

—

examination of the correlations between variables of a selected set;

)

elimination of variables that contribute relatively little information;

)

examination of the group of individuals in n-dimensional space;

N

allocation of individuals to previously demarcated groups;

N

recognition of misidentified individuals;

~

) determination of the weighting of variables in the construction of indices;
) orthogonalization of regression calculations; and
)

oo

reduction of the basic dimensions of variability in the measured set.

Furthermore, PCA’s multiple potential applications for geographic subject matter are identified
by Gould (1967)?, and also cited in Harris et al. (2011). Standard PCA is a non-spatial global
analysis, as it takes neither spatial autocorrelation nor spatial heterogeneity directly into
account. Although this can be partly remedied by a spatial analysis performed on the PCs, the
analysis would remain fundamentally global as local variations in the data are not addressed.
Geographically weighted principal component analysis (GWPCA), a method for
incorporating spatial heterogeneity, was first briefly introduced by Fotheringham et al. (2002)
and presented in more detail by Harris et al. (2011), who as seen above, strongly endorsed the
use of PCA as an analytical technique based on the justifications provided by carlier scholars.
Gollinni et al. (2015) detailed an R package, “GWinodel”, which could perform GWPCA,
among many other novel geographically weighted analyses. In contrast to the geographically
weighted approach of dealing with spatial heterogeneity, a PCA accounting for spatial
autocorrelation was developed by Jombart et al. (2008). The use of traditional PCA with spatial
data has also been featured in online documentation for GeoDa software, where local indicators
of spatial autocorrelation (LISAs) are presented as tools for analyzing principal components
(Anselin 2019). There have been several recent examples of PCA and/ or GWPCA being used
in the analysis of regional economic development, including a combined standard PCA-GIS
approach by Petrisor ct al. (2012) for different sets of variables in various Romanian regions, a
GWPCA used by Li, Cheng, and Wu (2016) for Jiangsu Province in China, and a very recent
effort by Cartone and Postiglione (2020) to augment PCA using spatial filtering to account for
both spatial autocorrelation and spatial heterogeneity in regional development in the Italian
province of Rome. This methodological flexibility when using PCA is well-suited for describing
the complex relationships between mobility-related socio-economic variables and population
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density. The use of PCA and spatial analysis to better understand the relationship between
socio-economic characteristics of mobility and the spatial organizing influence of agglomeration
would be a methodological contribution to transportation studies, geography, and other spatial
sciences.

Methods

The data analyzed in this study consist of 2018 American Community Survey (ACS)
S-year estimates. Shapefiles for minor county divisions (MCDs, equivalent to towns for most
of New England), counties, and state boundaries were obtained from the U.S. Census Bureau’s
website. The 2013 six-way classification typology for U.S. counties by National Center for
Health Statistics (NCHS) researchers (see Ingram and Franco 2014) was utilized. Using ESRI
ArcGIS, separate shapefiles for MCD in the six New England states were merged into one large
shapefile for the whole region, containing 1606 locations. Census data from the ACS were
reformatted in Microsoft Excel, where appropriate, to be expressed as population proportions
so as to prevent size effects from dominating the data. In the rare cases where there were missing
data, the proportion for the variable for the county to which the MCD belongs was substituted,
something that mostly occurred in far-northern Maine near the geographically large but sparsely
populated towns. A GAL (GenePix Array List) for queen-contiguity adjacency of all towns in
New England was obtained using GeoDA, an open-source exploratory spatial econometrics
software (see Anselin et al. 2006, Anselin and Rey 2014). The GAL file serves as a portable
spatial weights file for determining neighboring spatial unit and being relevant to spatial analysis
in multiple methodological approaches. The analysis was carried out using R for the Pearson
correlations, traditional PCA, and GWPCA, GeoDA for both the global and local versions of
univariate and bivariate Moran’s indices for spatial correlation, and R for final mapping of the
results.

Thirty-two variables (see Table 1) were selected from an initial list of nearly fifty
candidates. Variables were eliminated based on a number of criteria, including: negligible
attribute correlation with population density, negligible and statistically insignificant spatial
autocorrelation as measured by the Global Moran’s I, and anticipated redundancy with other
variables. Correlation with density and individual spatial autocorrelation were considered
important criteria owing to the central role played by both in this study. If potential variables
were not expected to react (cither positively or negatively) with density, then there was little
point to retaining them in this analysis. Also, a lack of statistically significant positive or negative
spatial autocorrelation (clustering) would make these variables difficult to analyze utilizing the
methods proposed below. An initial PCA was performed, and variables found to be making
little contribution to any of the selected PCs were also used to inform individual decisions.
There were some exceptions made even when the aforementioned criteria seemed to warrant
removal. Variables removed included: service and sales occupations, educational attainment
levels of some college and associate degree, median age, age dependency, old age dependency,
and child dependency ratios, female and male age groupings of 0-25, 25-65, and 65 and up,

desktop and laptop ownership (not exclusive of other devices such as smartphones and tablets),
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Pearson
Variables i Correlation

with Density
HHNoVehcle 0.196 0.514]
HH1Vehcle 0.152 0.235)
HH2Vehcle 0.120 -0.257|
HH3mVehde 0.294 -0.217
LongCommute 0.478 0.042
MedMinutes 0.466 0.037]
LeavesSto7 0.263 -0.149
Leaves7to9 0.382] 0.1
Transit 0.764 uﬁ:j
HH1Person 0.127] 0.1
HH2Person 0.330 -0.
HH3Person 0.206 0.
HH4Person 0.293| 0.04
Femaleto2s 0.286 0.1
Female25to65 0.110 0.04:
Female6SandUp 0.216 -0.
Maleto2s 0.290 0.
Male25to65 0.163 0.
MalebSandUp 0.296 -0.20
NonWhite 0.419 0.
MedAge 0.332 -0.34!
Below150PvThr 0.260 uuil
MedHomval 0.317| 0.25
0CC_MBASO 0.396 0.14
OCC_NRCM 0.243 -0.
OCC_PTTM 0.284 -0.
HSorEqvint 0.492 -0.1
DegreeBA 0.520 0.
DegreeAdv 0.570 0.1
Smartphone 0.602 0.20
Tablet 0.491 0.13
Broadband 0.464 0.1

Table 1: Description of Basic Socio-

Economic Variables Used in Analysis.

(Source: Author)

Results

lack of computer ownership, and finally dial-up
Internet. The resulting data set consisted of 1,606
observations (towns in New England) of 32 variables.
Of note is the definition of the variable LongCommute
as the percentage of workers with a forty-five minute
or longer commute. The occupation variables
OCC_MBASO, OCC_NRCM, OCC_PTTM
represent the respective summary census categories
of management, business, arts, and science; natural
resources, construction, and maintenance; and finally
production, transportation, and material moving.

A traditional principal component analysis (PCA)
was performed on the thirty-two variables (seen in
Table 1) with the “FactoMineR”, ‘factoextra’, and
“corrplot” R 1:}211:1{:1g.‘:s3 . The most important principal
components were chosen by consulting the Kaiser
criterion (1961), which selects components based
on those having an eigenvalue of greater than 1. The
selected PCs were analyzed for spatial correlation
using both global and local versions of univariate and
bivariate Moran’s I for identifying spatial clustering
(see Appendix B for Equations) in GeoDA. The
resulting cluster patterns could then be mapped in R
using the “tnap” package by Tennekes (2018). The
local univariate and bivariate spatial clustering patterns
of the selected principal components were then
analyzed and interpreted. Use of the NCHS county
typology also contributed to the analysis. Owing
to the limitations of traditional PCA, even when
accompanied by spatial indices of autocorrelation, a
geographically weighted principal component analysis
in the “GWinodel” package in R was performed on
the data set as well. The GWPCA output of the
localized “winning” variable for each selected principal
component was especially helpful here.

The results section consists of two parts: a traditional principal component analysis
(PCA) accompanied by a spatial analysis of the selected principal components and a brief

geographically weighted principal component analysis (GWPCA) to add to the findings.

38



The Northeastern Geographer Vol. 13 2022

Eigenvalue 82495 47503 37810 34107 17250] 11508 10395
Perc. Variance 25.78 14.84 11.82 10.66 5.39 360 3.25|
Cumulative Variance 25.78 40.62 52.44 63.10 65.49 72.09 75.33]
HHNoVehcle -0.0319 0.0743 0.
HH1Vehcle -0. -0.0889
HH2Vehcle 029 o
HH3mVehcle 0.2635|
LongCommute 0. -0.0219)  0.1917 0.
MedMinutes 0. 0.0464)  0.1945 0.
LeavesSto7 0.0167 -0.1254 -0.
LeavesTto9 -0.0295|  0.1018 -0.
Transit -0.1417 0.
HH1Person -0. -0.1558)  -0.39:
HH2Person -0. 0.
HH3Person -0. -0.0751 -0.
HHA4Person -0.3181 0.0110 -0.01!
Femaleto25 0. '
Female25t065 -0.1217|
Female65andUp -0.0834 ).3401
Maleto25 0.1785/
Male25t065 -0.1452
Male6SandUp -0.0691 [ 0.
NonWhite 0.3 0.2049
Me -0. -0.1
Below150PvThr -0. -0.1636 n.m
MedHomval | 0.
0CC_MBASO B 0.
OCC_NRCM 01038 00098 -0.0733| -0.0915| -0.0136| -O.
0ocC_PTTM 313 0.0049| -0.0494|  0.0983) 0.0630| O
HSorEqvint -0.2577| -0.3235| 0.0390 00400 O
DegreeBA 0.3776|  0.2591 -0.0486| -0.0672| -0.
eAdv 0.3 : 0. 00552l -00341 0.
Smartphone -0.0712| -0.0058] -0.1605| -0.0982]  0.0235| ag
Tablet -0.0719)  0.0790| -0.1865| -0.1222] 0.0478) 0.
Broadband -0, 0.0895| -0.1328| -0.0966| -0.0286] 0.
Moran's | 0.65 0.3860]  0.2050]  0.3970 Ms'm] uzm| nme
e -
with Density 02787 01928/ -0.4014] 02057| 03534 04226 o
Bivariate Moran's | zosl | |
with Density 0305 02 -0.164 0.147 0.297 0.29 tﬁl

Table 2. Summary of Traditional Principal Component Analysis. Interpreration Notes: Variable loadings

may be either positive or negative and it is rather the absolute value, i.e. its distance from 0 that is most

important. Thus, negative loadings can just as strongly characterize a principal component as a positive
loading. The choropleth scheme is employed to reinforce this point. Correlation summaries are given at

the bottom. (Source: Author)
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Part 1: Results of Principal Component Analysis

Seven out of thirty-two principal components (PCs) were initially selected for further
analysis based on the Kaiser criterion of having an eigenvalue of greater than one. These seven
PCs collectively explain 75 percent of the variance in the data set. These PCs are in effect
synthetic variables to which the original thirty-two variables are correlated cither positively or
negatively, over a range of magnitudes. The higher the absolute value of a loading, the more
closely identified with the PC a given variable is. A complete summary of the seven PCs,
including their variable loadings, is given in Table 2, which additionally contains correlation
indices for the PCs. These indices show global spatial autocorrelation (i.c. spatial correlation
of a PC with itself), attribute correlation with density, and global spatial correlation between
the PCs and density, or rather, the spatial lag of density. Since multiple variables can be strongly
correlated with a single PC, it is useful to think of these PCs as complex socio-economic
profiles. A description of these profiles is given in Table 3 for future reference and for the sake
of brevity, PC 1, PC 2, PC 3, etc... will mostly be used instead of the descriptor in the rest of the

results section.

Principal | Description
Component
PC1 Tech-Ed-MBASO
PC2 Larger Professional Households
PC3 Older, 2-Person, 2-Vehicle Households
PC4 Older, 1-Person Households
PC5 Long Commutes
PC6 Non-White, 2-Person Households, Transit
PC7 Economically Distressed, 2-Vehicle Households, Non-White

Table 3. Brief Descriptions of Selected Principal Components. Interpretation Notes: Consult Table 2 for
Explanation of Principal Component Characteristics (Source: Author).

The initial interpretation of the seven principal components has been informed both
by a careful reading of the PCA summary provided in Table 2 and the mapped clusters of
spatially autocorrelated PCs in Figure 2. PC1 accounts for over a quarter (25.78 percent)
of the variance in the original data set, and showing significant spatial autocorrelation, with
statistically significant high-high value clustering near large urban areas and in some rural
settings where several higher education institutions are located (i.e. the Five Colleges area in
western Massachusetts). PC1s spatial clustering patterns are not surprising given its profile
(refer back to Tables 2 and 3). PC2 is moderately spatially autocorrelated and clustered near
the major cities of Boston and New York City (along the “Gold Coast” of Connecticut).
PC3 is weakly autocorrelated and far more geographically dispersed in its clustering, as it is
in fact more representative of lower density and even some rural arcas than urban ones. PC4
shows an interesting pattern of dispersal across the region that is harder to interpret, as it
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Prin. Comp. 1

Prin. Comp. 2

Prin. Comp. 3

.f

Prin. Comp. 6

Prin. Comp. 4
8 ..

Prin. Comp. 5

Prin. Comp. 7

High-High
Low-Low
Low-High
High-Low

LISA Clusters
Not Significant

Figure 2. Spatial Autocorrelation of First Seven Traditional Principal Components from PCA.
(Source: Author using GeoDA software, Results mapped in ‘tmap’ package in R).
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Prin. Comp. 1 Prin. Comp. 2 Prin. Comp. 3

Prin. Comp. 5

Prin. Comp. 7

BILISA Clusters
Not Significant
High-High
Low-Low
Low-High
High-Low

Figure 3. Bivariate Local Moran’s I of First Seven Traditional Principal Components from PCA and
Population Density. Interpretation Notes: The spatial correlation seen below are between the principal
components and the spatial lag of population density. It does not represent a one-to-one spatial correlation
analysis between a principal component and density. Rather, it shows the spatial relationship of spatial
dependence between the PC in question and general area conditions of density as measured by the lag at
cach location. (Source: Author using GeoDA software, Results mapped in ‘tmap’ package in R).
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appears in both in some urban areas as well
as more rural rourist destinations such the
Berkshire mountains, Cape Cod, and the
White Mountains of New Hampshire. PC5
is squarely defined by longer commuting
behavior and thus can be found both on

the periphery of urban areas as well as rural
ones. PCG is clustered in urbanized areas
but does not register as being strongly
spatially autocorrelated, perhaps an artefact
concentration of its profile in a relatively small
number of towns vis-a-vis the whole of New
England. PC7’s pattern of clustering is very
difficult to discern given its only negligible
positive autocorrelation.

NCHS13_Type

Type 1

Trpe3 Local Spatial Dependence between PCs

Types and Population Density

Type 6

The principal components’ profiles

Figure 4. National Center for Health Staristics (Table 3) and parterns of spatial
(NCHS) 2013 Six-way County Typology. autocorrelation (Figure 2) have described
(Source: Author using ‘tmap’ package in R). internal relationships between original

variables and their geographic concentration.
Given the known spatial patterns of density,
particularly che spatial lag of density (refer back to Figure 1), and the measured spatial patterns
of autocorrelation among the PCs, it was mostly anticipated that there would be identifiable
clustering of high values of the PCs with high values of population density. In fact, the PCs'
statistical relationships demonstrate mildly positive relationships with density in all but one,
PC3. The Pearson’s correlation coefficient and the bivariate global Moran's indices given above

(see Table 2) establish that a statistical and spatial relationship exists but does not demonstrate
exactly where this correlation is found. The bivariate local Moran’s I of the PCs and population
density is mapped in Figure 3. A cautious summary and interpretation of the spatial dependency
between the PCs and what amounts to the spatial lag of density follows, PC1 and PC2 are
clearly positively spartially correlated with the general density characteristic of urbanized

areas and have a conversely negative correlation with low density areas of rural northern New
England. High-High correlation clusters berween PC3 and density are rather scant, with

more mixed but statistically significant clustering occurring in the north. The remaining PCs
demonstrate a pattern that has more emphasis on High-High clustering in urbanized areas while
at the same time having mixed clustering in the north.
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Type 1-Large Central Type 2-Large Fringe Type 3 - Medium
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10 PCT PC1 PCT PC1 PCT PC1

05
0.0pcs Q PC2| PC6 e Pc2| pce PC2|

PC4 PC4 PC4

Figure 5. Polar Coordinates Chart of Relative PC Importance for Six NCHS County Types (Refer to
Figure 4) in New England. (Source: Author using ‘ggplot2’ package in R).

Geography has been related 2 principal components as part of the analysis thus far.
Conversely, the perspective can be reversed, and multiple PCs related to a geography type. Using
the 2013 NCHS County Typology (see Figure 4), the relative importance of PCs to towns
falling within a given county type can be assessed (see Figure 5). Large metropolitan counties
(Type 1) such as Hartford County in Connecticut and Suffolk County (home of Boston) in
Massachusetts, are highly defined by PC1, PC2, PC5, and PC6. Briefly considering these PCs’
profiles: there is a prominent role played by educated professionals, their families, technological
consumption in urban and suburban areas. Long commutes and non-white, transit using,
two-person houscholds (PC6) are also typical, although presumably with slightly different
spatial distributions within each county (outer suburbs vs inner suburbs and central city). It
can be seen PC1, PC2, and PCS retain at least some measure of their importance through
all but the smallest county types. PC3 and PC4 have alternating levels of relative importance
in larger county types but stabilize into moderate importance in smaller ones. As the relative
influence of PC1 and PC2 recede in Small (Type 4), Micropolitan (Type 5), and Non-core
(Type 6) counties, the relative influence of other PC profiles, such as PC7, begins to be felt.

An interesting observation is that small metro counties (Type 4) combine many characteristics
of all PCs in moderate fashion but appear to skew to a slightly younger cohort (PC1 vs PC2).
These counties are located, for example, around Bangor, Maine, Berkshire Mountains in western
Massachusetts, the Burlington, Vermont area, the Cape Cod peninsula, and near Lewiston,
Maine. All these counties have notable colleges and universities.

The principal components analyzed above are “global” in nature and reflect a set of
constant relationships between contributing variables and their representative principal
components. Although these PCs and their relationship to density display spatial
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Figure 6. Winning Variable Results for Each Principal Component in Geographically Weighted Principal
Component Analysis. (Source: Author Using ‘GWmodel’ package in R, Mapping Results using ‘tmap’
package in R).
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dependence, this analysis was not fully spatial in the sense that it does not provide for a means of
identifying heterogeneity in attribute values across space. One possible approach to this problem
is by extending the PCA fully into the spatial domain using a geographically weighted principal
component analysis.

Part 2: Geographically Weighted Principal Component Analysis (GWPCA)

A GWPCA offers a more complex analysis of the spatial patterns underlying the PCs
and their contributing mobility-related variables than traditional PCA. The GWPCA was
performed using the “GWModel” package in R on the same set of variables as the traditional
non-spatial PCA above. All data were scaled (z-score normalization) before being put in the
model. A non-adaptive kernel function of “exponential” was chosen. A GWPCA consists of
both a traditional PCA (that should yield nearly identical results to any other PCA on the same
data set) and a spatial one. The outputs of GWPCA include ranges of variance across space as
well as the contribution of variables. In effect, each location has its own local PCA, with the
“local area” being determined by the kernel function. Despite the sophistication of the analytical
tool, the visual output is rather simple. Several types of maps can be produced, including one
that displays the spatial variation of total cumulative variation of PC1 to a subsequent PC, and
the second type displays the “winning” variable for each location, something that helps address
the question of which contributing variable for a given PC matters the most for a location. Only
“winning” variable maps will used in this analysis.

The results of GWPCA (especially when viewing their mapped patterns) must be treated
with caution as they are greatly affected by which variables are included (just as is the case with
traditional PCA) but also by the bandwidth selection. Given the potential for variability, it is
best to use this method as an exploratory one. With this precaution in mind, the mapped results
of the GWPCA on the thirty-two variables in this analysis will be discussed as an additional
consideration to the traditional PCA rather than formally analyzed in their own right (see
Figure 6). In contrast to global PCA where the “winning” variable for a PC would remain
constant, in GWPCA the “winning” variable is allowed to vary over space. The variable with
the highest absolute loading for a given location is mapped. As such, it is all the more telling
that for GWPC1, GWPC2, GWPC4, and GWPCS5 one variable dominates (or very nearly
so...) the whole region. GWPC3, GWPC6, and GWPC7 see greater spatial variability in which
contributing original variable is the most important. The winning variables from this GWPCA
are all important in their corresponding traditional PC, being at or nearly at the top ranking as
determined by their absolute value. Substantively they show that these variables were regionally
significant in the analysis of the data set used here.

This GWPCA discussion demonstrates that the relative importance of variables can change
over space and adds to the discussion of the traditional PCA by confirming the importance
of top contributing variables. However, there are two caveats to bear in mind: 1) is the
aforementioned potential for instability in geographically weighted results (owing to which
variables are included and bandwidth), and 2) is the fact that there may be little quantitative
difference between, for example three candidate variables (say, A, B, C) for being the “winner”
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with hypothetical loadings of 0.7356, -0.7451, 0.7196, respectively, but the variable with the
highest absolute loading (e.g. variable B with | -0.7451|) will be named the winner. There is a
strong possibility that many important variables would not be considered as a result. Despite
these concerns, GWPCA is a valuable addition to the analytical toolkit of multivariate spatial
analysis since it highlights the diversity relationships between variables across space.

Discussion

The seven selected principal components all displayed statistically significant spatial
dependence with population density. A closer look at their profiles makes this unsurprising.
University-educated, technologically connected, professionals and students in their younger
and working years comprised PC1. They lived in more expensive homes and are able to begin
their commute to work at a reasonable hour as distances traveled and time spent commuting are
not that great. This profile is significantly concentrated around urban areas and college towns
in New England. A similar profile was seen in PC2, only it is associated with larger families
and can be understood as suburban professional families with children. These two profiles
were among the most associated with the higher general density of urbanized areas. Thus, even
where the original contributing variables were selected to be related to density, but not too
closely as would have been the case with a measure of place-based accessibility or commuter
network connectivity, the top two PCs are clearly marked by an affiliation with density. The
mildly negative correlation of PC3 consisting of older, two-person, and -vehicle households
and density stands out among the other PCs, but not decisively so. Long commutes (PC5) are
found in both urban and rural areas but do not constitute an especially weighty PC overall.
The GWPCA highlighted that a number of contributing variables can be considered the most
influential vis-a-vis their PC depending upon location. Smartphones and broadband Internet
could both claims to be the most important contributing variable for different areas within the
PC1 profile. Other GWPCA results on winning variables can be interpreted and informative
towards the traditional PCA analysis in a similar manner. A number of conclusions can be
drawn from the forgoing analysis: 1) Even for socio-economic variables selected for the purpose
of not being too closely associated with density, density still matters a great deal. 2) There
appears to be a more dynamic relationship between urbanized (cities, suburbs, and urbanized
corridors) areas and socio-economic indicators dealing with education, occupation, wealth
than is the case with areas with far lower density. 3) Variables may be more important in some
locations than others.

The usefulness of a PCA analysis lay in identifying important variables and creating new
synthetic ones that can be used in regression modeling or the creation of indices. The seven PCs
created from this analysis could certainly be used for this purpose. Additionally, the traditional
PCA could also act as a filter of potential variables to include in a model and be aided in this
effort by the results of a GWPCA that would explicitly name “winning” variables for given
locations. Both of these applications are directly related to fitting regression models and future
research could pursue them, especially in the context of travel behavior. A third benefit of PCA
is in exploring the relationships between variables within the data set, performed on both a
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geographic and attribute level in this analysis. This is the more immediate contribution of this
research as large numbers of socio-economic variables are used in modeling transportation
behavior and sometimes the relationship between them is far from clear. APCA is only a
snapshot of these relationships for a given set of specific inputs, yet nevertheless, some trends

in the data relevant to the relationship between mobility, accessibility, and connectivity, all
anchored by agglomeration (represented here by population density) do emerge. Although the
close relationship of density to place-based accessibility (derived from a SIM) is well known,
the most important socio-economic variables within this data (selected for their association
with mobility) are also highly related to density, since they are most frequently found in dense,
urbanized areas. All of these areas also happen to have reasonably high measures of accessibility
and connectivity. It may be unclear as to how much population attributes such as wealth (home
value), level of educational attainment, occupation would directly translate into higher observed
levels of mobility (such as VMT), but they would certainly augment existing advantages of
highway network connectivity and accessibility, thus affecting a measure such as VMT. It

is clear that the spatial element of studying principal components cannot be minimized

or ignored. There is pronounced spatial variation in where different PCs are important.
Likewise, there is pronounced spatial variation in where constituent variables with a single

PC arc important. In the realm of transportation studies, this would reaffirm that the spatial
distribution of socio-economic factors contributing towards mobility must be studied just as
spatial variance in accessibility and connectivity.

Conclusion

The relationship between the socio-economic variables that influence mobility and
population density was shown to be statistically significant. Principal component analysis
allowed for a faster, unified, and more comprehensive analysis of these variables as they were
too numerous to study individually and their combined influence in the form of individual PCs
pointed to larger impacts that could not be described by one variable alone. Both the improved
understanding of these socio-economic variables as well as the direct outputs of PCA such
as the PCs and variables identified by their importance can be put towards efforts to model
transportation behavior and transportation systems in future research. One specific avenue may
be how socio-economic variables can help model connectivity within a regional commuter-flow
network when place-based accessibility does not adequately explain this alone. Another would
be to investigate the cumulative variance of geographically weighted principal components
across a region and how it relates to the spatial clustering found in global principal components.
This research should be of interest to scholars engaged with the study of travel behavior,
especially at larger regional scales. Some practitioners in the field of transportation planning and
modeling may be interested as well as this points towards methods of reducing the number of
potential variables to be including in customized travel demand models. Finally, it may also be
of interest to geographers with an interest in the New England region as it addresses important
socio-economic patterns across the region that have application both within and beyond travel-
to-work matters.
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Appendix A: Traditional and Geographically Weighted Principal

Component Analysis

Principal component analysis involves complex matrix operations and will only be very
briefly summarized here using notation found in Harris et al. (2011). All input data considered
in PCA can be summarized in 7 (number of variables) &y 7 (number of observations) matrix X.
The subsequently derived variance-covariance matrix = has dimensions 72 by 72 and is calculated

from :Ll after original variables in X have been mean centered, and ideally standardized so as
to eliminate size effects and distortions caused by different units of measurement, where T is

the matrix transpose function. The variance-covariance matrix X is described by the equation
LVL"=R where R = X and is a positive definite matrix, L is a matrix containing eigenvectors (in
this case, the loadings of each variable on the corresponding principal component), and Vis a
diagonal matrix of eigenvalues. The matrix product of XL creates the component scores for each
observation 7.

In contrast to the single global nature of traditional PCA, geographically weighted
regression (GWPCA) enables 7 local PCAs across the study area. Each observation in the data
set matrix X is a geographic location 7 (a point or centroid within an areal unit) with
coordinates (#, v). A weights matrix W is calculated for each location i and its neighbors using a
kernel function, in the case of this analysis: w;=exp(-d;;/r) where the weighting w;; is equal to the
exponentiated quotient of negative distance -d;; (between locations i and j) and the bandwidth r.
Thus, in calculating the variance covariance matrix X in GWPCA, the weight matrix W, as
defined above, is used in the equation:

Z(u,v) = XTW(y, v)X,

Having obtained the geographically weighted variance covariance matrix, eigenvalues and
eigenvectors can be calculated for each location 7 as:

LVLT|(u;, v) = Z(uy, vy),

Given that each location 7 has a small PCA, it is impractical to communicate GWPCA in the
same way as traditional PCA. Outputs such as local cumulative variance and identification of
“winning” original variables are provided instead.

Appendix B: Indicators of Spatial Autocorrelation

The global version of Moran’s index of spatial autocorrelation, referred to here as Global
Moran’s I, is expressed by the following equation (using notation borrowed from Anselin 2019):

I = X Xjwijzizj/So
Tizf/n !

Where the index 7 is equal the sum of the cross-product of observations of variable x at location
i (- X) = z; with observations of variable x at location j (xj- X) = z; over the variance at location
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i, ¥iz! /n, where 7 is the number of observations. The binary (0,1) weights matrix w;; filters out
cross products of locations that are not classified in advance as neighbors, either through
contiguity measures or some other scheme, by multiplying the cross product of location pairs
either by a 1 if they are designated neighbors, or 0 if they are not. The sum of all the locational
weights $i%j wy; = S, which weights the deviation scores of zj. Owing to the filtering of neighbors
vs non-neighbors, this measures is essentially one of the correlation of variable x to the spatial lag
itself.

The Global Bivariate Moran’s I is similarly calculated as the univariate Moran’s I above,
however it differs in that it is instead a correlation between variable x and the spatial lag (average
of neighbors) of variable y. The formula is given as:

_ 2i(Xjwijyjxi)
¥ix? ’

Ig

Where the index I is the sum of the filtered (by weight matrix w;;) cross product of observation
i of variable x with the spatial lag of variable y over the variance of x;.

Anselin (1995) devised local variants of these global measures of spatial autocorrelation so
that the clustering of statistically significant like values could be viewed on a map. The equation
for the univariate Local Moran’s I is given as:

Iy = cz; X wij 7,

Where the index I at location 7 is equal to the product of (xi- %) = z; and the weighted sum of
(x;- %) = z, i.c. the spatial lag of x. The variance, ¥; 27, is abbreviate to ¢. Similarly, the Bivariate
Local Moran’s I is given as:

B __
I = cx; X wij ¥js

Where the index I® at location 7 is equal to the product of (x;- ¥) = x; and the weighted sum of
(5= ) = ¥}, i.c. the spatial lag of y, and the variance ¥; z2 abbreviate to ¢. Statistically significant
clusters of index values for both 7; and 1% can be mapped according to the scheme of high-high,
low-low, low-high, and high-low to reflect the relationship between a observation at location i
compared to its neighbors, high value of x at 7 surrounding by low values etc.
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Endnotes

! The nodes are physical locations (i.e. residential origins and work destinations) but the links are conceptual

(i.c. mapped straight-line flows of commuters of varying volume reaching work by some indeterminate physical
route).

* These applications were first stated by Gould (1967) but were cited in Harris et al. (2011) as: “(a) measures of
terrain roughness; (b) the varying spatial nature in the connectivity of towns; (c) orientations of physical features
and transport networks; (d)characteristics of mean information fields (Hagerstrand 1967); (c) classification;

(f) homogencity of architectural features; (g) measures of residential desirability; and (h) the interpretation of
mental maps.” (1718).

? The “FactoMineR” package was developed by Le Sebastien and Husson (2008). It contains the algorithms for
PCA. Kassambara and Mundt (2020) specifically developed “factoextra” to work alongside “FactoMineR” and
visually communicate the complex PCA output. The R package “corrplot” (Wei and Simko 2017) is also used for
visualization. Kassambara (2017) encouraged and demonstrated the coordinated use of these three packages in a
practical introductory text to multivariate analysis.
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